Silicene oxides: formation, structures and electronic properties

نویسندگان

  • Rong Wang
  • Xiaodong Pi
  • Zhenyi Ni
  • Yong Liu
  • Shisheng Lin
  • Mingsheng Xu
  • Deren Yang
چکیده

Understanding the oxidation of silicon has been critical to the success of all types of silicon materials, which are the cornerstones of modern silicon technologies. For the recent experimentally obtained two-dimensional silicene, oxidation should also be addressed to enable the development of silicene-based devices. Here we focus on silicene oxides (SOs) that result from the partial or full oxidation of silicene in the framework of density functional theory. It is found that the formation of SOs greatly depends on oxidation conditions, which concern the oxidizing agents of oxygen and hydroxyl. The honeycomb lattice of silicene may be preserved, distorted or destroyed after oxidation. The charge state of Si in partially oxidized silicene ranges from +1 to +3, while that in fully oxidized silicene is +4. Metals, semimetals, semiconductors and insulators can all be found among the SOs, which show a wide spectrum of electronic structures. Our work indicates that the oxidation of silicene should be exquisitely controlled to obtain specific SOs with desired electronic properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structures, mobilities, electronic and magnetic properties of point defects in silicene.

In the fabrication and processing of silicene monolayers, structural defects are almost inevitable. Using ab initio calculations, we systemically investigated the structures, formation energies, migration behaviors and electronic/magnetic properties of typical point defects in silicene, including the Stone-Wales (SW) defect, single and double vacancies (SVs and DVs), and adatoms. We found that ...

متن کامل

Numerical study on new functionality of spin-heat cross effect Name: ○Qinfang Zhang Laboratory at RIKEN: Computational Condensed Matter Physics Lab

Stimulated by miraculous properties of graphene, scientists show great interests in other two dimensional (2D) monolayer materials, such as silicene, h-BN and boron sheet. Among them, silicene, a silicon film of one atomic thickness as the counterpart of graphene, has been theoretically predicted and experimentally synthesized on Ag(111), Ir(111), and ZrB2(0001) substrates recently. Different f...

متن کامل

The structural and density state calculation of B Nitrogen doped silicene nano flake

In this paper, we study the effect of single Boron/Nitrogen impurityatom on electronic properties of a silicene nano flake. Our calculations are basedon density functional theory by using Gaussian package. Here, one Si atom insilicene nano flake substitutes with a Boron/Nitrogen atom. The results show thatsubstitution of one Si atom with single Boron/Nitrogen atom increases distanceof impurity ...

متن کامل

Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices

Superlattice provides a new approach to enrich the class of materials with novel properties. Here, we report the structural and electronic properties of superlattices made with alternate stacking of two-dimensional hexagonal germanene (or silicene) and a MoS2 monolayer using the first principles approach. The results are compared with those of graphene/MoS2 superlattice. The distortions of the ...

متن کامل

Stability and Electronic Properties of Two-Dimensional Silicene and Germanene on Graphene CHIH-PIAO CHUU,

Submitted for the MAR14 Meeting of The American Physical Society Stability and Electronic Properties of Two-Dimensional Silicene and Germanene on Graphene CHIH-PIAO CHUU, YONGMAO CAI, C.-M. WEI, M.-Y. CHOU, Academia Sinica — Recently, there have been experimental attempts to synthesize silicene, a two-dimensional (2D) graphene-like form of silicon on metal surfaces such as Ag(111) and Ir(0001)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013